
Examining the effects of communication
constraints on large scale distributed

applications.

Dr. Jacky Mallett

Distributed Applications

What are Distributed Applications?

• Large scale, message based systems – typically scaling up
to hundreds of thousands of individual computers

• Real time

• Run on heterogeneous computing platforms, connected by
communication networks

• eg. Skype, Web Services, Massively Multiplayer Online
Games (MMO’s, etc.)

What are MMO’s?

Strictly, they are real time distributed communicating systems

• Communicating
– Computation is based on exchange of information between processes

– (message passing)

• Real time
– Behavior of system evolves over time based on previous state, with

hard limits on performance in each individual time interval

• Distributed
– There is no ‘single server’

– The application is spread over a set of connected computers

– Eve for example, ~150 core servers (proxy + sols) plus client machines

– ~57,000 machines (PCU max @ Jan 2010)

Special Case of Complex Systems

“A complex system is a network of heterogeneous components that
interact nonlinearly…”

• Currently no adequate mathematical description for these systems
• Difficult to predict behaviour over time – provably impossible in

many cases
• Combinatorial explosions when modeling at large scale

Many scientific fields are currently blocking on complex systems issues.

Distributed systems vs. Parallel Algorithms

Important distinction between distributed communicating systems, and
parallel algorithms.

As long as there’s no communication of data or results between
threads, they can be arbitrarily assigned across processors

Communication is the biggest source of problems in these systems

Distributed Systems/Applications
(Not to scale)

Number of servers

Number
of Users Internet

~ 1.5 billion users
circa 2010

Phone System

Postal Service

Game Consoles
~1-4 players

Eve
56,000 real time users

~60 servers

Bank ATM network
Airline Ticketing

SWIFT

“The Cloud”
AWS, Google,
Microsoft et al

WoW

Distributed Applications

Broadly speaking, we can divide into two groups, based on the
underlying network topology:

 Hierarchical (Client-Server) Mesh & Partial Mesh

Telephony Packet Switched Networking

Web Services Skype

Bank ATM P2P (Bittorrent et al)

World of Warcraft MMO Eve MMO

Applications frequently combine both at higher levels of abstraction. E.g. P2P
networks are seeded from a single point, and then use mesh based file
transfer.

Communicating Groups

Real time limits on communication occur within a group of
communicators:

• Message processing times at nodes (cpu latency)

• Bandwidth between nodes

• Communication speed between nodes (transmission latency)

• Topological Arrangement of the nodes

Complex set of interdependent factors

Pipeline

Client-Server

Fully Connected
Mesh

Information Space

Information Space of a Group

• amount of instantaneous communication that can be performed.

• Assume nodes must send and receive messages asynchronously.

Pipeline

Instantaneous Message Limit

2 messages (each node can either send or
receive)

1 message (server bottleneck)

2 messages

Hierarchical

Fully Connected
Mesh

Communication based applications are always limited by
the singular instance of real time when messages are
received

Group Size Limits

The assumption that all members of a group should be able to communicate directly
with each other, imposes connectivity limits:

• Defines a group as the nodes that are accessible within a single hop.

• At each node there is a limit to the number of direct connections it can support to
other nodes

• Below the group size limit, inter-group communication is only constrained by
hardware capacity

• Above the group size limit some nodes have to act as relays for other node’s

messages, restricting total information capacity.

Information Capacity.

Define Information capacity of a network or group as:

Limit on the amount of instantaneous information (messages)
that can be transmitted by a network.

Strictly Hierarchical: Link capacity of server, L

Partial Mesh Network: L √N*

N Number of nodes in network.

L Link capacity of a node (number of links it can support to
other nodes for the required message load)

*Gupta P. and P. R. Kumar. 2000. The Capacity of Wireless Networks

Scaglione, Anna and Sergio Servetto. 2002. On the Interdependence of Routing and Data Compression in Multi-
Hop Sensor Networks

Information Space for Partial Mesh Topologies

If all nodes can autonomously originate messages, required network capacity is O(N(N-1)).

However, maximum capacity for a partial mesh network is O(L√N)

Beyond the group size/single hop connectivity limit, Information Space does not scale with
additional Nodes even with a mesh based architecture.

for small N, there is a special place where
everything works.

The
Lab.

Latency

• Communication and Computational Latency acts as an “invisible”
force in these systems

• Communication Latency – time taken to send and receive a message
• Computational Latency – time taken to perform processing

consequent on message.
• Message rate at server ≈ application RTT , client -> server

RTT(Message
Latency)

Server CPU # Clients

1s 10ms 100

100ms 10ms 10

10ms 10ms 1

With the assumption that clients send messages on
receipt of server response

RTT Client
-> Server

Information versus Control

Controlling a group:

• Requires agreement on task, and communication to all
involved nodes

Hierarchical

Mesh

Hierarchical Networks are optimised for
rapid control from a central point.

Mesh networks are optimised for
maximum exchange of information.

For large scale distributed applications,
above the group size, the control path is
inevitably faster than the return
information flow.

How long does the group have to make
the decision?

Advantages & Disadvantages

Hierarchical Mesh

Provides single point of
control/Synchronization

No single point for control

Information Capacity is O(Server) Information capacity is O(L√N)

Single point of failure Robust to multiple failures

Excess load is inherently throttled No intrinsic throttling – the end points can
always overload the network

Optimal for control purposes Optimal for Information sharing purposes

Latency also plays a part:
As latency increases, relative advantages of Mesh Information Sharing drop
Large Scale, long latency applications with control requirements may not be
able to wait for information from all nodes before acting

As do Fisher Consensus Requirements
Synchronization needs dictate a hierarchical topology in many applications

Design Questions

• What are the advantages and disadvantages of the two
topology groups?

• Why are particular topologies used for different applications?

• What are the limits of particular design approaches?

MMO System Scaling Issues

• Fast real time interaction between players
– Eg. fighting
– Scales O(N2) or worse – e.g. autonomous missiles

• Slow real time interaction
– Eg. Chat, visual contact, status updates

• Transfers between servers
– State propagation (Consensus Issues)
– Latency change with inter-server communication

• Inventory
– O(No. of Players * amount of stuff each one can have)
– In Eve, corporations can also own stuff
– Creates database scaling issues, and also some real time game issues if large

moves are performed
– Eve players are packrats

Game Design Scaling Issues

• Room design
– Scaling issue when producing MMO games
– Sharding allows a lot of replicated content, content of game can be

developed slower
• Or allow players to generate/design own content
• Player owned stations in Eve, Second Life

– Topological organisation of rooms can create scaling issues at different
levels of the system from emergent behaviour
• e.g. Jita

• Game Balance
– Presents as various scaling and complexity issues and should probably

be its own field of research

• Distributed computing issues apply at all levels of abstraction
– Inter-process communication ≈ Inter-player communication
– Modify for Human layer distributed issues – considerably slower, less

reliable, and much lower scaling capability (group size)

Design Intuition

• Complex problems are solved by breaking them down into smaller, simpler
problems

• Break the complex system down into elements whose behaviour can be
modeled and at least estimated. (Back of the envelope is fine)

• Ideally, break it down into elements that do as little as possible
communication with each other.

• Topology – arrangement of communication between nodes

• Information capacity – how many messages are required/time period

• Transmission Latency – how long does it take to receive a message

• Computational Latency – how long does it take to process a message

• Group size – function of latency, topology, and information capacity

Designing Large Scale Distributed Applications

• Communication Limits are unavoidable once an application
goes beyond its individual group size limit
– Change the problem so that it is below the group size limit (or improve

the hardware)

• Eve Online
– Physics simulation is performed on client and servers

– Communication efficient < 1 message/s

– Direct tradeoff of CPU on server vs message rate to client

• Break problem into distributed groups
– Now have to deal with topology tradeoffs

– As much as possible, isolate shared information to sub-groups

– Solve problems as close as possible to the source of information that
creates or resolves them.

Recognise and Design for Limits

• Control requirements impose a hierarchical topology

• Information sharing is maximised with mesh topologies

• Some application spaces are unobtainable
– The capacity for universal access to information scales badly with the

number of nodes in the system

– Broadcast technology has the lowest possible information space

• In the limit distributed applications are limited by general
communication needs not local CPU
– Can frequently tradeoff CPU vs communication to increase capacity

– Pre-distribute information and access using simple messages cf.
American Football Playbook (tradeoff of memory vs communication)

Challenges

• There are usually multiple ways to solve the majority of
distributed systems problems
– Each solution will have tradeoffs, and typically some of

them will be mutually orthogonal
• They can often also be solved and created at each layer of

abstraction
• Each solution will have and advantages and disadvantages
• Beware small world solutions if you want anything to scale
• Be honest about what costs are being shifted onto other

layers/(teams)
• Avoid complex solutions – it’s hard enough getting the simple

ones to work.

